Fuzzy Ridge Regression with Non Symmetric Membership Functions and Quadratic Models
نویسندگان
چکیده
Fuzzy regression models has been traditionally considered as a problem of linear programming. The use of quadratic programming allows to overcome the limitations of linear programming as well as to obtain highly adaptable regression approaches. However, we verify the existence of multicollinearity in fuzzy regression and we propose a model based on Ridge regression in order to address this problem.
منابع مشابه
FGP approach to multi objective quadratic fractional programming problem
Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...
متن کاملA new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy
In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...
متن کاملFuzzy Approximations with Non-symmetric Fuzzy Parameters in Fuzzy Regression Analysis
This paper proposes fuzzy regression analysis with non-symmetric fuzzy coefficients. By assuming non-symmetric triangular fuzzy coefficients and applying the quadratic programming formulation, the center of the obtained fuzzy regression model attains more central tendency compared to the one with symmetric triangular fuzzy coefficients. For a data set composed of crisp inputs-fuzzy outputs, two...
متن کاملIdentification of Possibilistic Linear Systems by Quadratic Membership Functions of Fuzzy Parameters
We have already formalized several models of the possibilistic linear regression analysis, where it is assumed that possibilistic parameters are non-interactive, i.e., the joint possibilistic distribution of parameters is defined by minimum operators. In this paper, we will deal with the interactive case in which quadratic membership functions defined by A. Celmins are considered. With the same...
متن کاملA NOTE ON EVALUATION OF FUZZY LINEAR REGRESSION MODELS BY COMPARING MEMBERSHIP FUNCTIONS
Kim and Bishu (Fuzzy Sets and Systems 100 (1998) 343-352) proposeda modification of fuzzy linear regression analysis. Their modificationis based on a criterion of minimizing the difference of the fuzzy membershipvalues between the observed and estimated fuzzy numbers. We show that theirmethod often does not find acceptable fuzzy linear regression coefficients andto overcome this shortcoming, pr...
متن کامل